Assimilation of Thermal Emission Spectrometer atmospheric data during the Mars Global Surveyor aerobraking period
نویسندگان
چکیده
The Thermal Emission Spectrometer aboard the Mars Global Surveyor spacecraft has produced an extensive atmospheric data set, beginning during aerobraking and continuing throughout the extended scientific mapping phase. Temperature profiles for the atmosphere below about 40 km, surface temperatures and total dust and water ice opacities, can be retrieved from infrared spectra in nadir viewing mode. This paper describes assimilation of nadir retrievals from the spacecraft aerobraking period, LS = 190◦–260◦, northern hemisphere autumn to winter, into a Mars general circulation model. The assimilation scheme is able to combine information from temperature and dust optical depth retrievals, making use of a model forecast containing information from the assimilation of earlier observations, to obtain a global, time-dependent analysis. Given sufficient temperature retrievals, the assimilation procedure indicates errors in the a priori dust distribution assumptions even when lacking dust observations; in this case there are relatively cold regions above the poles compared to a model which assumes a horizontally-uniform dust distribution. One major reason for using assimilation techniques is in order to investigate the transient wave behavior on Mars. Whilst the data from the 2-h spacecraft mapping orbit phase is much more suitable for assimilation, even the longer (45–24 h) period aerobraking orbit data contain useful information about the three-dimensional synoptic-scale martian circulation which the assimilation procedure can reconstruct in a consistent way. Assimilations from the period of the Noachis regional dust storm demonstrate that the combined assimilation of temperature and dust retrievals has a beneficial impact on the atmospheric analysis.
منابع مشابه
Data assimilation for Mars: an overview of results from the Mars Global Surveyor period, proposals for future plans and requirements for open access to assimilation output
The Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor (MGS) has produced an extensive atmospheric data set, both during the initial aerobraking hiatus and later from the scientific mapping phase of the mission which lasted almost three complete Martian seasonal cycles. Thermal profiles for the atmosphere below about 40 km, and total dust and water ice opacities, have been retrieve...
متن کاملThermal Tides in an Assimilation of Three Years of Thermal Emission Spectrometer Data from Mars Global Surveyor
Introduction. Thermal tides are particularly prominent in the Mars atmosphere with the result that temperature and wind fields have a strong dependence on local solar time (LT). Tides include westward propagating migrating (sun-synchronous) waves driven in response to solar heating and additional nonmigrating waves resulting from zonal variations in the thermotidal forcing. Zonal modulation of ...
متن کاملThermal Tides in an Assimilation of Three Years of Thermal Emissionspectromenter Data from Mars Global Surveyor
Introduction. Thermal tides are particularly prominent in the Mars atmosphere with the result that temperature and wind fields have a strong dependence on local solar time (LT). Tides include westward propagating migrating (sun-synchronous) waves driven in response to solar heating and additional nonmigrating waves resulting from zonal variations in the thermotidal forcing. Zonal modulation of ...
متن کاملThermal Emission Imaging System (THEMIS) infrared observations of atmospheric dust and water ice cloud optical depth
[1] The Mars Odyssey spacecraft entered into Martian orbit in October 2001 and after successful aerobraking, began mapping in February 2002. Thermal infrared images taken by the Thermal Emission Imaging System (THEMIS) on board the Odyssey spacecraft allow for the quantitative retrieval of atmospheric dust and water ice aerosol optical depth. Data collected so far cover late northern winter, sp...
متن کاملOverview of the Mars Global Surveyor mission
The Mars Global Surveyor spacecraft was placed into Mars orbit on September 11, 1997, and by March 9, 1999, had slowly circularized through aerobraking to a Sunsynchronous, near-polar orbit with an average altitude of 378 km. The science payload includes the Mars Orbiter Camera, Mars Orbiter Laser Altimeter, Thermal Emission Spectrometer, Ultrastable Oscillator (for Radio Science xperiments), a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007